Wire Belt Drive Loads and Torques
Show/Hide Equations


F_{fr}=P\sin\theta \Leftrightarrow \mu N=P\sin\theta

\mu (P\cos\theta)=P\sin\theta \Leftrightarrow \mu =\tan\theta

\omega_{P} = \frac{\nu_{b}}{r} =\frac{2\nu_{b}}{D}= 2 \pi f

J_{L} = \frac{1}{4}m_{L}D^2, J_{P} = \frac{1}{8}m_{P}D^2

J_{B} = \frac{1}{4}m_{B}D^2, J_{M} = TBD

T_{a} = J_{T}\alpha_{P} = (J_{L}+J_{P}+J_{B}+J_{M})\frac{\omega_{P1}-\omega_{P0}}{t}

T_{L} = \frac{m_{L}Dg(\sin\theta+\mu\cos\theta)}{2\eta}

\tau_{M} = K_{S}(T_{L}+T_{a})

P=\tau_{M}\omega_{P1}

n = \left(\frac{rev}{2\pi}\right)\left(\frac{60 s}{min}\right)\omega_{P1}

Mass of the load (m_{L}): kg
Belt angle (\theta): degrees
Belt acceleration (\alpha_{P}): rad/s2
Belt angular velocity (\omega_{P1}): rad/s
Pulley/roller diameter (D): m
Number of pulleys/rollers:
Inertia of the pulley/roller (J_{P}): kg*m2
Inertia of the load (J_{L}): kg*m2
Inertia of the belt (J_{B}): kg*m2
Inertia of the motor (J_{M}): kg*m2 (see motor spec.)
Friction coefficient (\mu):
Efficiency (\eta): (0.85 to 0.95 ref.)
Safety Factor (K_{S}): (1.5 to 2.0 ref.)
Acceleration Torque (T_{a}):

Load Torque (T_{L}):

Motor Torque (\tau_{M}):

Motor Power (P):

Motor Speed (n):