|
||
Wire Belt Drive Loads and Torques | ||
Show/Hide Equations | ||
F_{fr}=P\sin\theta \Leftrightarrow \mu N=P\sin\theta \mu (P\cos\theta)=P\sin\theta \Leftrightarrow \mu =\tan\theta \omega_{P} = \frac{\nu_{b}}{r} =\frac{2\nu_{b}}{D}= 2 \pi f J_{L} = \frac{1}{4}m_{L}D^2, J_{P} = \frac{1}{8}m_{P}D^2 J_{B} = \frac{1}{4}m_{B}D^2, J_{M} = TBD T_{a} = J_{T}\alpha_{P} = (J_{L}+J_{P}+J_{B}+J_{M})\frac{\omega_{P1}-\omega_{P0}}{t} T_{L} = \frac{m_{L}Dg(\sin\theta+\mu\cos\theta)}{2\eta} \tau_{M} = K_{S}(T_{L}+T_{a}) P=\tau_{M}\omega_{P1} n = \left(\frac{rev}{2\pi}\right)\left(\frac{60 s}{min}\right)\omega_{P1} |