image/svg+xml d d i SHAFT d o HUB l
Interference fits between a shaft and its components can sometimes be used effectively to minimize the need for shoulders and keyways [see Budynas p. 399]:


p = \frac{\delta}{\frac{d}{E_{o}}\left(\frac{d^2_{o}+d^2}{d^2_{o}-d^2}+v_{o}\right)+\frac{d}{E_{i}}\left(\frac{d^2+d^2_{i}}{d^2-d^2_i}-v_{i}\right)}

\sigma_{t, shaft}=-p\left(\frac{d^{2}+d^{2}_i}{d^{2}-d^{2}_i}\right)  \sigma_{t, hub}=p\left(\frac{d^{2}_o+d^{2}}{d^{2}_o-d^{2}}\right)

T=(\pi/2)fpld^{2}

Nominal Shaft Dia. (d): inches
Shaft Inside Dia. (d_{i}): inches
Hub Outside Dia. (d_{o}): inches
Hub Length (l): inches
coefficient of friction (f): COF

Shafts and Hubs are usually made out of steel (table 1).

Shaft Yield Strength: ksi
Hub Yield Strength: ksi
Shaft Material Name Shaft Elastic Modulus (E_{i}) Shaft Poisson's ratio (v_{i})
ksi
Hub Material Name Hub Elastic Modulus (E_{o}) Hub Poisson's ratio (v_{o})
ksi
---

Copyright © 2015 Estiven R. Sierra