|
||
This form calculates spherical Hertzian or Contact stress. For a plane surface, use d2 = 10e9 or other large number. For an internal surface d2 is expressed as a negative quantity [see R.G. Budynas, p. 122]. For material properties see Table 1. |
||
b=\sqrt[]{\frac{2F}{\pi l}\frac{(1-v^2_{1})/E_{1}+(1-v^2_{2})/E_{2}}{1/d_{1}+1/d_{2}}} p_{max}=\frac{2F}{\pi bl} FOS=\frac{min(S_{y1},S_{y2})}{p_{max}} \sigma_{1}=-2vp_{max}\left (\sqrt{1+\frac{z^2}{b^2}}-\left |\frac{z}{b}\right | \right ) \sigma_{2}=-p_{max}\left (\frac{1+2\frac{z^2}{b^2}}{\sqrt{1+\frac{z^2}{b^2}}}-2\left |\frac{z}{b}\right | \right ) \sigma_{3}=\frac{-p_{max}}{\sqrt{1+\frac{z^2}{b^2}}} \tau_{max}=\frac{\sigma_{1}-\sigma_{3}}{2} |