no image available

This form calculates spherical Hertzian or Contact stress. For a plane surface, use d2 = 10e9 or other large number. For an internal surface d2 is expressed as a negative quantity [see R.G. Budynas, p. 122]. For material properties see Table 1.


a=\sqrt[3]{\frac{3F}{8}\frac{(1-v^2_{1})/E_{1}+(1-v^2_{2})/E_{2}}{1/d_{1}+1/d_{2}}}

p_{max}=\frac{3F}{2\pi a^2}  FOS=\frac{min(S_{y1},S_{y2})}{p_{max}}

\sigma_{1}=\sigma_{2}=-p_{max}\left [\left (1-\left |\frac{z}{a}\right |tan^{-1}\frac{1}\left |{z/a}\right |\right )\left (1+v \right )-\frac{1}{2(1+\frac{z^{2}}{a^{2}})}\right ]

\sigma_{3}=\frac{-p_{max}}{1+\frac{z^{2}}{a^2}}

\tau_{max}=\frac{\sigma_{1}-\sigma_{3}}{2}

Sphere 1 diameter (d1): inch, Poisson's ratio (v1):
Stress Depth (z1): inch, Elastic Modulus (E1): ksi
Yield Strength (Sy1): ksi

Sphere 2 diameter (d2): inch, Poisson's ratio (v2):
Stress Depth (z2): inch, Elastic Modulus (E2): ksi
Yield Strength (Sy2): ksi

Applied Force (F): lbf

   
---
Copyright © 2015 Estiven R. Sierra